تریتا نیوز

منو اصلی

  • صفحه اصلی
  • اقتصاد
  • واریته
  • سلامت
  • درباره ما

logo

  • صفحه اصلی
  • اقتصاد
  • واریته
  • سلامت
  • درباره ما
  • آقاجانلو: زمینه صادرات محصولات صنایع معدنی به اوراسیا فراهم شود

  • بانک قرض‌الحسنه مهر ایران بیشترین وام را پرداخت و کمترین معوقات را ثبت کرد

  • کنسرت نمایش هنرجویان موسیقی کودک

  • هر وام، یک مهربانی؛ هر مشتری، یک لبخند / ۱.۵ میلیون نفر از ۱۴۰ همت مهربانی بهره‌مند شدند

  • معاملات طلا و نقره در بورس کالا مصداق تحقق شعار سال

  • حمایت بانک صادرات ایران از ۲۴۳ هزار خانواده ایرانی در دولت چهاردهم

  • با حضور وزیر ارتباطات و فناوری اطلاعات و مدیرعامل؛ سه پروژه پست بانک ایران با اعتباری بالغ بر ۱۰۵۰ میلیارد ریال در استان یزد افتتاح شد

  • بانک پارسیان به دنبال تسهیل مسیر توسعه تولید؛ با ارایه جامع خدمات بانکی

  • پرداخت ۶هزار و ۵۲۷میلیاردریال تسهیلات تکلیفی در۵ماه

  • مدیرعامل بانک سپه فرارسیدن هفته دولت و روز کارمند را تبریک گفت

واریته
صفحه اصلی›واریته›تراشه‌های سیلیکون فوتونی اینتل می‌تواند باعث ارتقای شبکه‌های عصبی هوش مصنوعی شود

تراشه‌های سیلیکون فوتونی اینتل می‌تواند باعث ارتقای شبکه‌های عصبی هوش مصنوعی شود

توسط اپراتور خبر
۱۳۹۸-۰۳-۱۳

جدیدترین اخبار از پیشرفت‌های اینتل حاکی از آن است که معماری تراشه‌های جدید این شرکت باعث ارتقا و بهبود سرعت و عملکرد شبکه‌‌های عصبی هوش مصنوعی می‌شود.

فعالیت تمام شرکت‌های فعال درزمینه‌ی شبکه‌‌های عصبی تا‌به‌حال براساس تراشه‌های سیلیکونی بوده است. پردازنده‌ها (CPU)، پردازنده‌های گرافیکی (GPU)، تراشه‌های پردازش شبکه‌های عصبی (TPU) و مدارهای مجتمع برنامه‌ریزی‌شدنی (FPGA) همه‌ی این‌ها ممکن است ویژگی‌های عملکردی متفاوتی داشته باشند؛ اما از ماده‌ای واحد ساخته شده‌اند. اینتل مشغول ساخت شبکه‌های هوش مصنوعی با استفاده از دانش فوتونیک سیلیکونی است؛ دانشی که درزمینه‌ی مطالعات تحقیقاتی و کاربرد انواعی از سیستم‌های فوتونی فعالیت و از سیلیکون به‌عنوان بستر نوری استفاده می‌کند.

دو سال پیش، کار تحقیقاتی پژوهشگران دانشگاه MIT نشان داد شبکه‌های عصبی نوری (ONN) می‌توانند در عملیات‌های با توان ضعیف و سرعت کم کاربردی باشند. این امکان به‌‌دلیل وجود نوعی مدار فوتونی به‌نام تداخل‌سنج ماخ‌زندر (MZI) است. پیکره‌بندی تداخل‌سنج ماخ‌زندر به‌صورت حاصل‌ضرب ماتریس ۲ در ۲ عمل می‌کند. این تداخل‌سنج می‌تواند برای تعیین نسبت اختلاف فاز بین دو موج ‌برهم‌راستا مربوط‌ به منبع نوری همدوس کاربرد داشته باشد. در این روش، از ضرب‌کردن فازهای دو پرتوی نور به‌صورت ماتریس ۲ در ۲ استفاده می‌شود و با قرارگرفتن MZIها در حالت آرایه‌ی مثلثی‌شکل، ماتریس‌های بزرگ‌تری ایجاد می‌شوند که هسته‌ی اصلی محاسبات مربوط ‌به یادگیری عمیق هستند.

 کازیمیر ویرزینسکی، مدیر ارشد دفتر CTO در گروه هوش مصنوعی اینتل گفت:

هر فرایند توسعه و تولید می‌تواند نقایصی داشته باشد و فناوری جدید به دور از نقص نیست؛ اما باید در نظر داشته باشیم تغییرات کوچک در داخل تراشه‌ها می‌تواند بر دقت محاسبات تأثیر بسزایی بگذارد. به‌منظور عملیاتی‌ترکردن شبکه‌های عصبی نوری (ONN) در تولید، باید بدانیم چقدر به تغییرات معمول در فرایند حساس هستند؛ به‌‌ویژه زمانی‌که در مقیاس‌های واقع‌بینانه‌ و بزرگ‌تری در نظر گرفته می‌شوند. همچنین، تلاش می‌کنیم بفهمیم چگونه می‌توان این تغییرات را باتوجه‌به معماری مدارهای مختلف قدرتمندتر کرد.

در مقاله‌ی جدید اینتل، دو نوع شبکه‌ی عصبی نوری مقاوم دربرابر خطا بررسی شده است. یکی از شبکه‌های عصبی نوری طراحی قابل‌تنظیم‌تری (GridNet) دارد؛ در‌حالی‌که دیگری با تحمل خطای بهتری (FFTNet) ساخته شده است. معماری GridNet با این پیش‌فرض کار می‌کند که MZI‌ها در یک شبکه هستند؛ در‌حالی‌که FFTNet الگویی پروانه‌ای دارد که معماری آن‌ها برای محاسبات تبدیل سریع فوری (Fast Fourier Transforms) طراحی و مدل‌سازی شده‌ است.

هر دو مدل شبکه‌ی عصبی نوری برای تشخیص دست‌خط آموزش دیده‌اند. GridNet از میزان دقت ۹۵ تا ۹۸ درصدی درمقایسه‌با FFTNet برخوردار است. باوجوداین، FFTNet به‌طورخاص برای رسیدگی به اشتباه‌ها و خطاهای تولید عملکرد قدرتمندتری داشت و با افزودن نویز و انتقال فاز به هر MZI‌ شبیه‌سازی شده است. FFTNet به‌صورت درخورتوجهی از GridNet عملکرد پایدارتری داشت و دراصل، کارایی‌اش با درنظرگرفتن نویز مصنوعی به کمتر از ۵۰ درصد افت می‌کرد؛ درحالی‌که کارایی FFTNet در همان شرایط ثابت باقی می‌ماند.

نمونه‌کارهای اولیه و شبیه‌سازی‌شده نشان می‌دهند شبکه‌های عصبی نوری می‌توانند جایگزین معتبری برای طرح‌های مبتنی‌بر تراشه‌های سیلیکونی باشند. ویرزینسکی اضافه کرد:

مدارهای بزرگ‌تر به دستگاه‌های بیشتری چون MZI‌ها در هر تراشه نیازمندند؛ بنابراین، تلاش برای رسیدن به قابلیت تنظیم دقیق (Fine Tune) در هر دستگاه در تراشه‌ای پس از تولید، مشکلی روبه‌رشد است. روش مقیاس‌پذیرتر برای آموزش ONNها در محیط نرم‌افزار، مدارهای تولیدانبوه براساس این پارامترها خواهد بود. نتایج نشان می‌دهد انتخاب معماری مناسب می‌تواند احتمال دستیابی به مدارهایی با عملکرد مطلوب را افزایش خواهند داد؛ حتی اگر با تغییرات در تولید مواجه شویم.

قابلیت ایجاد ONNهای مؤثر در مواجهه با تغییرات تولیدی، یعنی بهتر است در حین فرایند یادگیری ساخت این مدل شبکه‌ی عصبی، بهینه‌سازی روش ساخت آن‌ها را فرابگیریم. این قابلیت می‌تواند درصورت انبوه‌سازی و رقابت‌پذیری با معماری تراشه‌های سیلیکونی معمولی، به تجاری‌سازی این تراشه‌ها کمک کند.

لینک کوتاه مطلب: https://tritanews.ir/?p=83451

مطالب مرتبط درباره نویسنده

  • واریته

    خبرهایی از عروسک‌های جدید «کلاه قرمزی» +‌ فیتیله و عموپورنگ

    ۱۳۹۵-۱۲-۰۵
    توسط اپراتور خبر
  • واریته

    شاگردان محمدرضا لطفی در نیاوران کنسرت می‌دهند

    ۱۳۹۸-۰۴-۲۵
    توسط اپراتور خبر
  • واریته

    بازیگر معروف سینما در نقش توماس ادیسون

    ۱۳۹۸-۰۴-۰۶
    توسط اپراتور خبر
  • واریته

    نتفلیکس ادامه پخش سریال های «The Punisher» و «Jessica Jones» را کنسل کرد

    ۱۳۹۷-۱۱-۳۰
    توسط اپراتور خبر
  • واریته

    آرنولد شوارتزنگر ترامپ را موجب ضعف برنامه «کارآموز سلبریتی» خواند

    ۱۳۹۵-۱۲-۱۶
    توسط اپراتور خبر
  • واریته

    ۲۰ میراث جهانی جدید به انتخاب یونسکو

    ۱۳۹۷-۰۴-۲۶
    توسط اپراتور خبر

پاسخ دادن لغو پاسخ

تبلیغات

  • آخرین

  • محبوب

  • دیدگاه ها

  • آقاجانلو: زمینه صادرات محصولات صنایع معدنی به اوراسیا فراهم شود

    توسط مهناز خدادوست
    ۱۴۰۴-۰۶-۰۳
  • بانک قرض‌الحسنه مهر ایران بیشترین وام را پرداخت و کمترین معوقات را ثبت کرد

    توسط مهناز خدادوست
    ۱۴۰۴-۰۶-۰۳
  • کنسرت نمایش هنرجویان موسیقی کودک

    توسط مهناز خدادوست
    ۱۴۰۴-۰۶-۰۳
  • هر وام، یک مهربانی؛ هر مشتری، یک لبخند / ۱.۵ میلیون نفر از ۱۴۰ همت ...

    توسط مهناز خدادوست
    ۱۴۰۴-۰۶-۰۳
  • معاملات طلا و نقره در بورس کالا مصداق تحقق شعار سال

    توسط مهناز خدادوست
    ۱۴۰۴-۰۶-۰۳
  • عفونت بند ناف نوزادان را جدی بگیرید

    توسط اپراتور خبر
    ۱۳۹۶-۰۳-۲۰
  • کوالکام می گوید در صورت پیوستن به برادکام، دو مشتری مهم خود را از دست ...

    توسط اپراتور خبر
    ۱۳۹۶-۱۱-۲۳
  • خون دماغ یعنی ….

    توسط اپراتور خبر
    ۱۳۹۶-۰۲-۲۳
  • تبلیغات محیطی جذاب و بی‌نقص با نمایشگرهای حرفه ای Outdoor سامسونگ

    توسط اپراتور خبر
    ۱۳۹۶-۰۷-۲۹
  • بهترین زمان برای خرید لپ‌تاپ چه زمانی است؟

    توسط اپراتور خبر
    ۱۳۹۶-۰۳-۱۶
  • مریم نجفی رحیمیان
    در
    ۱۴۰۱-۰۳-۱۸

    مهدی احمدی رییس اداره کل روابط عمومی خبرداد: اعلام اسامی برندگان جوایز قرعه کشی در ...

    سلام خسته نباشید سوال ...
  • قیمت آهن انبار مشهد
    در
    ۱۴۰۱-۰۲-۱۷

    بیماری‌هایی که کلیه را عفونی می‌کنند

    با سلام ممنون از ...
  • آهن مشهد
    در
    ۱۴۰۱-۰۲-۱۷

    با کفش Futurecraft 4D آدیداس آشنا شوید؛ کتانی ساخته شده با فناوری چاپ سه بعدی

    خیلی مقاله عالیی بود ...
  • مهناز خدادوست
    در
    ۱۴۰۱-۰۲-۰۶

    ۱۳۸۸ فقره وام ازدواج توسط بانک قرض‌الحسنه مهر ایران پرداخت شد

    با سلام و ارادت ...
  • مهناز خدادوست
    در
    ۱۴۰۱-۰۲-۰۶

    ۱۳۸۸ فقره وام ازدواج توسط بانک قرض‌الحسنه مهر ایران پرداخت شد

    با سلام و ارادت ...
  • خانه
  • واریته
  • سلامت
  • اقتصاد
  • درباره تریتا
  • تبلیغات در تریتا
  • درباره ما
تمامی حقوق این وبسایت برای تریتانیوز محفوظ است